

TERPENOIDS FROM *NEPETA TUBEROSA* SUBSP. *RETICULATA* (II)

J. G. URONES, I. SANCHEZ MARCOS, J. FERNÁNDEZ FERRERAS and P. BASABE BARCALA

Departamento de Química Orgánica, Facultad de Química, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain

(Revised received 3 June 1987)

Key Word Index—*Nepeta tuberosa*; Labiate; diterpenoids; new isopimarane derivatives; triterpenoids; steroids.

Abstract—Four new diterpenoid compounds have been isolated from *Nepeta tuberosa* subsp. *reticulata* and their structures elucidated by spectroscopic methods and chemical correlations as abietatrien-3 β -ol, isopimara-8,15-dien-7 β ,18-diol, isopimara-8,15-dien-7 α ,18-diol and 7 α -hydroxy-isopimara-8(14),15-dien-18-yl malonate. We have also isolated the known terpenoids acetyl isocupressic acid, isopimara-8(14),15-dien-7 α ,18-diol, phytol, ursolic acid, and the steroids sitosterol and sitosterol glucoside.

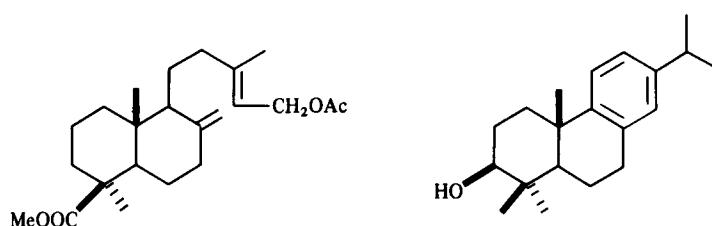
INTRODUCTION

In a previous paper [1] we reported on the composition of the volatile oil and the non-volatile hexane extract from *Nepeta tuberosa* subsp. *reticulata*. In this paper we report our preliminary results concerning the isolation and structural determination of some new minor compound of the non-volatile extract.

RESULTS AND DISCUSSION

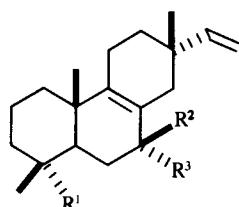
The non-volatile part of the hexane extract of *N. tuberosa* subsp. *reticulata* was dewaxed and fractionated by CC, as in our previous study [1]. A further 10 compounds were isolated and identified in addition to the compounds isolated previously. The acids were purified as methyl esters (1 and 6).

The ^1H NMR of the methyl ester 1 (IR: 1755, 1740, 1250 cm^{-1}) showed signals of the following groups: $\text{Me}-\text{C}=\text{CH}-\text{CH}_2\text{OAc}$ (*E*), $-\text{COOMe}$, $>\text{C}=\text{CH}_2$ and three methyl singlets. On alkaline hydrolysis followed by treatment with diazomethane it gave methyl isocupressate [2, 3].

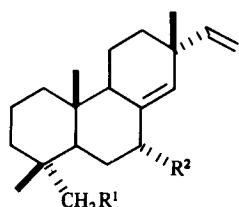

The IR spectrum of compound 2 contained bands corresponding to a hydroxyl group (3400 cm^{-1}) and an aromatic ring (1640, 1610, 1500 cm^{-1}). Its ^1H NMR spectrum (Table 1) showed signals of: a 1,2,4-trisubstituted aromatic ring (δ 7.17, 1H, *d*, J = 7.8 Hz; 7.01, 1H, *dd*, J = 7.8 and 1.9 Hz; 6.91, 1H, *d*, J = 1.9 Hz); a hydrogen geminal to a secondary hydroxyl group (δ 3.30, 1H, *m*) similar to those of 3 β -hydroxyderivatives of diterpenes and triterpenes [4, 5]; five methyls, three of them singlets (δ 1.20, 1.08 and 0.90); and a doublet of an isopropyl group (δ 1.23, 6H, *d*, J = 6.8 Hz). The hydroxyl group was assigned to C-3 due to the fact that Me-18 and Me-19 were shielded with respect to the normal chemical shift owing to a γ -gauche effect induced by the hydroxyl group at C-3 while Me-20 showed a normal chemical shift.

The existence of a 1,2,4-trisubstituted aromatic ring in a compound containing 20 carbon atoms (see Table 2), of an isopropyl group and of a hydroxyl group at 3 β , allowed us to assign compound 2 the structure of abietatrien-3 β -ol.

Compounds 3 and 5 showed in their ^1H NMR spectrum (Table 1) signals of an ABX system (3: δ 5.76, *dd*, J = 17.6 and 10.6 Hz, H-15; 4.97, *dd*, J = 17.6 and 1.6 Hz, H-16; 4.92, *dd*, J = 10.7 and 1.6 Hz, H-15; 5: δ 5.74, *dd*, J = 17.4 and 10.9 Hz, H-15; 4.92, *dd*, J = 10.9 and 1.6 Hz, H-16; 4.85, *dd*, J = 17.4 and 1.6 Hz, H-16), characteristic of an isopimarane skeleton [6]. They also showed both signals characteristic of protons geminal to two hydroxyl groups, one of them primary and the other secondary and allylic (see Table 1). Acetylation of 3 gave the diacetate 4 (see Tables 1 and 2). The ^{13}C NMR spectrum of compounds 3 and 5 (see Table 2) confirmed the presence of a double tetrasubstituted bond which could only be situated between positions 9 and 10 an of the skeleton. Oxidation of 3 or 5 with Jones reagent followed by esterification gave 6, reported in the literature [7]. Accordingly, 3 and 5 were epimers at C-7. The stereochemistry of each was established by comparison of its ^{13}C NMR displacements with those described in the literature of analogous epimers but with a carboxylic group at C-18 [8].


The IR spectrum of compound 7 showed bands of an acetate group (1750, 1250 cm^{-1}) (this comes from a previously acetylated fraction) and its ^1H and ^{13}C NMR spectra (see Tables 1 and 2) contained signals corresponding to the acetate (δ 2.01, 3H, *s*), to a methyl ester (δ 3.76, 3H, *s*) and to the methylene of a malonate (^1H NMR δ 3.39, 2H, *s*; ^{13}C NMR δ 41.46) in addition to the signals corresponding to an isopimarane skeleton (the ABX system of a vinyl group at δ 5.74, 4.91 and 4.98 and three methyl singlets at δ 1.03, 0.87 and 0.83) substituted at C-18.

The isopimarane skeleton had a double trisubstituted bond assignable to position 8-14 of the molecule, the only one in which the olefinic hydrogen was not coupled to α -hydrogens (δ 5.67, *d*, J = 1.83 Hz). Moreover, the displacement of the doublet centred at δ 5.32 could only be assigned to an allylic hydrogen geminal to an acetoxyl function which had to be at C-7. Hydrolysis of 7 with KOH-MeOH (2M) gave the diol 8, also isolated as a natural product in this work, whose spectroscopic and physical properties coincide with those described in the



1

2

	R ¹	R ²	R ³
3	CH ₂ OH	H	OH
4	CH ₂ OAc	H	OAc
5	CH ₂ OH	OH	H
6	COOMe	R ² = R ³ = O	

	R ¹	R ²
7	—OCO—CH ₂ —COOMe	OAc
8	OH	OH

Table 1. ¹H NMR data for compounds 2–5 and 7–8

H	2	3	4	5	7	8 [9]*
3	3.30 <i>m</i>					
7	2.77–2.99 <i>m</i>	3.82 <i>br s</i>	5.08 <i>br s</i>	4.15 <i>dd</i> (8.1, 1.1)	5.32 <i>dd</i> (2.85–2.9)	4.16 <i>dd</i> (2.85–2.9)
11	7.17 <i>d</i> (7.8)					
12	7.01 <i>dd</i> (7.8, 1.9)					
14	6.91 <i>d</i> (1.9)				5.67 <i>d</i> (1.8)	5.48 <i>d</i> (2.1)
15	2.77–2.99 <i>m</i> 2.99 <i>m</i>	5.76 <i>dd</i> (17.6, 10.7)	5.70 <i>dd</i> (17.8, 10.4)	5.74 <i>dd</i> (17.4, 10.9)	5.74 <i>dd</i> (18.1, 10.0)	5.80 <i>dd</i> (17.4, 10.7)
16	1.23 <i>d</i> (6.8)	4.97 <i>dd</i> (17.6, 1.6)	4.94 <i>dd</i> (17.8, 1.6)	4.92 <i>dd</i> (10.9, 1.6)	4.91 <i>dd</i> (10.0, 1.4)	4.95 <i>dd</i> (17.4, 1.4)
		4.92 <i>dd</i> (10.7, 1.6)	4.92 <i>dd</i> (10.4, 1.6)	4.85 <i>dd</i> (17.4, 1.6)	4.89 <i>dd</i> (18.1, 1.4)	4.92 <i>dd</i> (10.7, 1.4)
17	1.23 <i>d</i> (6.8)	0.95 <i>s</i>	0.96 <i>s</i>	1.01 <i>s</i>	1.03 <i>s</i>	1.04 <i>s</i>
18	1.08 <i>s</i>	3.53 <i>d</i> 2.98 <i>d</i> (11.3)	3.88 <i>d</i> 3.64 <i>d</i> (11.0)	3.44 <i>d</i> 3.15 <i>d</i> (10.9)	3.91 <i>d</i> 3.74 <i>d</i> (11.2)	3.52 <i>d</i> 2.88 <i>d</i> (11.5)
19	1.20 <i>s</i>	0.74 <i>s</i>	0.86 <i>s</i>	0.81 <i>s</i>	0.83 <i>s</i>	0.74 <i>s</i>
20	0.90 <i>s</i>	0.98 <i>s</i>	0.97 <i>s</i>	0.07 <i>s</i>	0.87 <i>s</i>	0.80 <i>s</i>
—OAc			2.05 <i>s</i> 2.03 <i>s</i>		2.01 <i>s</i>	
—COOMe					3.76 <i>s</i>	
—OCOCH ₂ COOMe					3.39 <i>s</i>	

* C₆D₆.

Table 2. ^{13}C NMR data for compounds 1-8

C	1†	2	3	4	5	6*	7	8 [9]*
1	38.39‡	37.11	35.90	35.43	35.99	36.34	38.61	38.76
2	20.07	28.19	18.38	18.09	18.19	17.94	18.10	18.38
3	3931‡	78.90	35.90	35.58	34.87	37.06	35.83	35.21
4	44.45	39.09	37.23	36.32	37.35	46.79	36.57	37.79
5	55.56	50.04	38.83	41.23	43.27	44.82	42.38	39.56
6	26.36	19.00	28.11	26.07	29.67	34.86	27.92	28.74
7	38.39‡	30.76	69.39	71.68	72.94	198.90	75.24	73.34
8	148.09	134.75	126.36	122.96	127.13	129.28	137.06	139.40
9	56.56	146.92	142.43	144.60	141.46	164.53	46.48	46.32
10	40.33	37.44	38.36	38.08	38.35	39.25	38.13	38.30
11	21.98	124.34	21.16	21.49	21.58	22.72	18.41	18.38
12	38.85‡	123.97	34.70	34.44	34.66	33.90	34.31	34.35
13	142.78	145.78	34.90	34.97	34.87	34.39	37.61	37.59
14	118.35	126.81	39.56	38.50	37.65	33.76	134.23	134.14
15	61.41	33.50	146.18	145.95	145.69	145.45	147.72	148.38
16	16.49	23.96	111.26	111.14	111.13	111.65	111.26	110.67
17	106.39	23.96	27.63	27.70	28.57	27.29	25.95	25.78
18	20.98	28.19	70.90	72.63	71.89	177.75	73.61	70.98
19	177.67	15.34	17.84	17.39	17.55	16.44	17.53	18.07
20	12.69	24.86	18.47	18.41	20.19	18.31	15.06	14.86
$-\text{COOMe}$	51.01					52.07		
$-\text{OCOMe}$	170.97			170.99			170.12	
$-\text{OCO}_2\text{Me}$	28.86			20.94			21.61	
$-\text{OCO}-\text{CH}_2-\text{COOMe}$							41.46	
$-\text{OCO}-\text{CH}_2-\text{COO}_2\text{Me}$							52.46	
$-\text{OCO}-\text{CH}_2-\text{COO}_2\text{Me}$							166.86	
$-\text{OCO}-\text{CH}_2-\text{COOMe}$							166.30	

* C_6D_6

† These data are not included in the bibliography

‡ These signals may be interchangeable

literature [9]. Accordingly, 7 was identified as methyl malonate of 7α -acetyl-isopimara-8(14),15-dien-18-yl.

Also isolated were phytol (9), sitosterol (10), ursolic acid (in the form of methyl ester) (11) and sitosterol glucoside (12) whose structures were established by comparison with authentic samples and with the data in the literature.

EXPERIMENTAL

Mps uncorr.; ^1H NMR: 200 MHz., CDCl_3 , TMS as int. standard; ^{13}C NMR: 50.3 MHz.

Extraction and isolation. The plant was collected in Ciudad Rodrigo (Salamanca, Spain) in July 1983. The dried plant (5.7 kg) was extracted with *n*-hexane at room temp. for 4 weeks. After evapn of the solvent, the extract (148.1 g) was subjected to vapour-current distillation, yielding 8.10 g volatile fraction and 140.0 g non-volatile fraction. The composition of volatile fraction and partial composition of the non-volatile fraction was reported in previous papers. Other compounds of the dewaxed non-volatile fraction were isolated by CC and prep. TLC.

Abietatrien-3 β -ol (2). Colourless crystals (mp 109–111°, *n*-hexane), $\text{C}_{20}\text{H}_{30}\text{O}$. $[\alpha]_D + 37.26^\circ$ (CHCl_3 ; *c* 0.95); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3400, 1640, 1610, 1500, 1460, 1380, 1050, 1030, 940, 880, 820, 750; ^1H NMR: see Table 2.

Isopimara-8,15-dien-7 α ,18-diol (3). Colourless oil, $\text{C}_{20}\text{H}_{32}\text{O}_2$. $[\alpha]_D + 54.5^\circ$ (CHCl_3 ; *c* 2.3); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3400, 3090, 1650, 1470, 1390, 1030, 920, 750; ^1H NMR: see Table 1; ^{13}C NMR: see Table 2.

Isopimara-8,15-dien-7 α ,18-diol diacetate (4). Colourless oil, $\text{C}_{24}\text{H}_{36}\text{O}_4$. $[\alpha]_D + 55.0^\circ$ (CHCl_3 ; *c* 1.73); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3090, 1750, 1650, 1480, 1390, 1250, 910; ^1H NMR: see Table 1; ^{13}C NMR: see Table 2.

Isopimara-8,15-dien-7 β ,18-diol (5). Colourless crystals (mp 95–97°, Et_2O) $\text{C}_{20}\text{H}_{32}\text{O}_2$. $[\alpha]_D + 29.5^\circ$ (CHCl_3 ; *c* 0.9); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3400, 3090, 1650, 1470, 1390, 1070, 920; ^1H NMR: see Table 1; ^{13}C NMR: see Table 2.

7 α -Acetyl-isopimara-8(14),15-dien-18-yl and methyl malonate (7). Colourless oil, $\text{C}_{26}\text{H}_{38}\text{O}_6$. $[\alpha]_D + 9.7^\circ$ (CHCl_3 ; *c* 1.15); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3400, 3090, 1770, 1750, 1650, 1470, 1390, 1250, 920; ^1H NMR: see Table 1; ^{13}C NMR: see Table 2.

REFERENCES

- Pascual Teresa, J. de, Urones, J. G., Marcos, I. S., Ferreras, J. F., Lithgow, A. M. B. and Basabe, P. (1987) *Phytochemistry* **26**, 1481.
- Pascual Teresa, J. de, San Feliciano, A., Tabernero, M. L., Miguel del Corral, J. M., Barrero, A. F. and Grande, M. (1978) *An. Quim.* **74**, 459.
- Caputo, R., Dovinola, V. and Mangoni, L. (1969) *Chim. Ind.* **51**, 1383.
- Pascual Teresa, J. de, Urones, J. G., Basabe, P., Bermejo, F. and Marcos, I. S. (1981) *An. Quim.* **77**, C. 290.
- Pinto, A. C., Peixoto, E. M. and Fiorani, N. G. M. (1984) *Phytochemistry* **23**, 1293.

6. Wenkert, E. and Buckwalter, B. L. (1972) *J. Am. Chem. Soc.* **94**, 4367.
7. Pascual Teresa, J. de, Barrero, A. F., Muriel, L., San Feliciano, A. and Grande, M. (1980) *Phytochemistry* **19**, 1153.
8. Delmond, D., Taran, M., Valade, J., Petraud, M. and Barbe, B. (1981) *Org. Magn. Reson.* **17**, 207.
9. De Kimpe, N., Schamp, N., var Puyvelde, L., Dubé, S., Chagnon-Dubé, M., Borremans, F., Anteunis, M. J. O., Declerq, J. P., Germain, G. and Van Meersche, M. (1982) *J. Org. Chem.* **47**, 3628.
10. Breit-Maier, E. and Voelter, W. (1978) *¹³C NMR Spectroscopy*. Verlag Chemie, Weinheim.
11. Pascual Teresa, J. de Urones, J. G., Sánchez, A. and Basabe, P. (1978) *An Quim.* **74**, 675.
12. Atchuta Ramaiah, P., Lavie, D., Budhiraja, R. D., Sudhir, S. and Garg, K. N., (1984) *Phytochemistry* **23**, 149.